..............page:184-190
..............page:209-218
..............page:235-241
..............page:191-198
..............page:245-249
..............page:180-183
..............page:232-234
..............page:199-202
hilbert kong jian de yi ge te zheng xing zhi
Liu Peide The following theorem be proved. A Banach space X is isomorphic to Hilbert space iff the inequalityholds for every martingale f = with values in X;where Φ is any restrictively increasing Young’s convex function on [0;∞)and C is a constant depend only on the space X and the function Φ.
..............page:219-225
..............page:253-255
..............page:150-169
..............page:129-142
..............page:249-250
..............page:143-149
..............page:242-244
..............page:226-231
..............page:170-178
..............page:251-252
..............page:203-208